SHORT COMMUNICATIONS

Synthesis of Heterocyclic Compounds on the Basis of 2*H*-Chromen-2-one Derivatives

N. I. Ganushchak^a, L. O. Kobrin^a, E. E. Bilaya^a, and V. L. Mizyuk^b

^a Ivan Franko Lviv National University, ul. Kirilla i Mefodiya 6, Lviv, 79005 Ukraine e-mail: lkobryn2002@mail.ru

^b Ukrainian Printing Academy, Lviv, Ukraine

Received January 23, 2006

DOI: 10.1134/S1070428006070335

Thiazolidinone derivatives are known to exhibit versatile pharmacological activity [1, 2]. Obushak et al. [3] recently developed a procedure for the synthesis of thiazolidinones via reaction of substituted carbothioamides with iodoacetic acid [3]. With the goal of obtaining new substituted thiazolidinones, we used a related modified heterocyclization of 2H-chromen-2-one and 3-(4-bromophenyl)-2H-chromen-2-one thiosemicarbazones IIIa and IIIb with ethyl bromoacetate. Initial 3-substituted 2*H*-chromen-2-one hydrazones **IIa** and **IIb** were prepared from the corresponding 2H-chromene-2-thiones Ia and Ib which were reported previously [4, 5]. Treatment of hydrazones IIa and IIb with benzyl isothiocyanate in anhydrous ethanol gave N-benzylthiosemicarbazones IIIa and IIIb. The condensation of the latter with ethyl bromoacetate in the presence of sodium acetate was accompanied by closure of thiazolidine ring with formation of substituted thiazolidin-4-ones **IVa** and **IVb**.

2H-Chromen-2-one hydrazones IIa and IIb (*general procedure*). A solution of 10 mmol of 2*H*-chro-

mene-2-thione **Ia** or **Ib** and 0.6 ml (12 mmol) of hydrazine hydrate in 50 ml of anhydrous ethanol was heated for 3 h under reflux. The solvent was removed under reduced pressure, and the residue was extracted with boiling petroleum ether. The extract was cooled, and the precipitate was filtered off and recrystallized from methanol.

2*H***-Chromen-2-one hydrazone (IIa).** Yield 1.28 g (80%). ¹H NMR spectrum, δ , ppm: 5.68 br.s (2H, NH₂), 6.15 d (1H, 3-H, ${}^{3}J = 9.8$ Hz), 6.71 d (1H, 4-H, ${}^{3}J = 9.8$ Hz), 7.20 d (1H, 5-H, ${}^{3}J = 6.8$ Hz), 7.02 d.d (1H, 6-H, ${}^{3}J = 6.8$ Hz), 7.23 d.d (1H, 7-H, ${}^{3}J = 7.6$ Hz), 7.04 d (1H, 8-H, ${}^{3}J = 7.6$ Hz).

3-(4-Bromophenyl)-2*H***-chromen-2-one hydrazone (IIb).** Yield 2.36 g (75%), mp 115–116°C. ¹H NMR spectrum, δ , ppm: 5.90 br.s (2H, NH₂), 6.85 s (1H, 4-H), 7.28 d (1H, 5-H, ${}^{3}J$ = 7.2 Hz), 7.04 d.d (1H, 6-H, ${}^{3}J$ = 7.2 Hz), 7.26 d.d (1H, 7-H, ${}^{3}J$ = 8.1 Hz), 7.11 d (1H, 8-H, ${}^{3}J$ = 8.1 Hz), 7.45–7.60 m (4H, C₆H₄). Found, %: C 57.01; H 3.43; Br 25.20; N 8.77. C₁₅H₁₁BrN₂O. Calculated, %: C 57.16; H 3.52; Br 25.35; N 8.89.

N-Benzylthiosemicarbazones IIIa and IIIb (general procedure). A solution of 15 mmol of benzyl isothiocyanate in 10 ml of ethanol was added to a suspension of 10 mmol of hydrazone **IIa** or **IIb** in 50 ml of ethanol. The mixture was heated for 3.5–4 h, and the precipitate was filtered off and recrystallized from dimethylformamide.

2*H***-Chromen-2-one** *N*-benzylthiosemicarbazone (**IIIa**). Yield 2.63 g (85%), mp 177–178°C. ¹H NMR spectrum, δ, ppm: 4.80 d (2H, CH₂, ${}^{3}J$ = 5.6 Hz), 6.35 d (1H, 3-H), 7.35 d (1H, 4-H), 7.37 d (1H, 5-H), 7.13 d.d (1H, 6-H), 7.39 d.d (1H, 7-H), 7.16 d (1H, 8-H), 7.10–7.40 m (5H, C₆H₅), 8.49 t (1H, NH, ${}^{3}J$ = 5.6 Hz), 10.07 s (1H, NH). Found, %: C 65.78; H 4.73; N 13.52; S 10.19. C₁₇H₁₅N₃OS. Calculated, %: C 66.0; H 4.89; N 13.58; S 10.36.

3-(4-Bromophenyl)-2*H*-**chromen-2-one** *N*-**ben-zylthiosemicarbazone** (IIIb). Yield 3.62 g (78%), mp 225–227°C. ¹H NMR spectrum, δ , ppm: 4.71 d (2H, CH₂, 3J = 5.6 Hz), 7.30 s (1H, 4-H), 7.33 d (1H, 5-H), 7.17 d.d (1H, 6-H), 7.41 d.d (1H, 7-H), 7.28 d (1H, 8-H), 7.20–7.55 m (9H, C₆H₅, C₆H₄), 7.60 t (1H, NH, 3J = 5.6 Hz), 10.51 s (1H, NH). Found, %: C 59.17; H 3.62; Br 16.99; N 8.79; S 6.64. C₂₃H₁₈BrN₃OS. Calculated, %: C 59.49; H 3.91; Br 17.21; N 9.05; S 6.90.

3-Benzyl-2-(2*H***-2-chromen-2-ylidene)hydrazono-thiazolidin-4-ones IVa and IVb (***general procedure***).** A solution of 3 mmol of ethyl bromoacetate in 10 ml of ethanol was added over a period of 1 h to a suspension of 2 mmol of thiosemicarbazone **IIIa** or **IIIb** and 0.25 g (3 mmol) of sodium acetate in 10 ml ethanol, heated to the boiling point. The mixture was then heated for 3–4 h under reflux, and the precipitate was filtered off, washed with hot alcohol, and recrystallized from DMF.

3-Benzyl-2-(2*H***-chromen-2-ylidene)hydrazono-thiazolidin-4-one (IVa).** Yield 0.52 g (75%), mp 167–

168°C. 1 H NMR spectrum, δ, ppm: 3.91 s (2H, SCH₂), 4.92 s (2H, NCH₂), 6.47 d (1H, 3-H), 7.27 d (1H, 4-H), 7.41 d (1H, 5-H), 7.16 d.d (1H, 6-H), 7.40 d.d (1H, 7-H), 7.17 d (1H, 8-H), 7.20–7.60 m (5H, C₆H₅). Found, %: C 65.03; H 4.07; N 11.95; S 8.97. C₁₉H₁₅N₃O₂S. Calculated, %: C 65.31; H 4.33; N 12.03; S 9.18.

3-Benzyl-2-[3-(4-bromophenyl)-2*H***-chromen-2-ylidene]hydrazonothiazolidin-4-one (IVb).** Yield 0.76 g (68%), mp 256–257°C. ¹H NMR spectrum, δ, ppm: 3.84 s (2H, SCH₂), 4.94 s (2H, NCH₂), 7.38 s (1H, 4-H), 7.47 d (1H, 5-H), 7.16 d.d (1H, 6-H), 7.40 d.d (1H, 7-H), 7.19 d (1H, 8-H), 7.25–7.65 m (9H, C₆H₅, C₆H₄). Found, %: C 59.39; H 3.46; Br 15.63; N 8.15; S 6.15. C₂₅H₁₈BrN₃O₂S. Calculated, %: C 59.53; H 3.60; Br 15.84; N 8.33; S 6.36.

The ¹H NMR spectra were recorded on a Bruker spectrometer operating at 400 MHz in a pulse mode; the chemical shifts were measured relative to tetramethylsilane as internal reference; DMSO-*d*₆ was used as solvent. The progress of reactions and the purity of products were monitored by TLC on Silufol UV-254 plates using benzene–acetone (5:1) as eluent; spots were visualized under UV light.

REFERENCES

- 1. Yong, S.L., Zhou Chen, and Perer, F.K., *Bioorg. Med. Chem.*, 1998, vol. 6, p. 1811.
- 2. Kaoru, S., Takayuki, O., and Koichi, N., *J. Med. Chem.*, 2000, vol. 43, p. 1040.
- 3. Obushak, N.D., Matiichuk, V.S., and Martyak, R.L., *Khim. Geterotsikl. Soedin.*, 2003, no. 7, p. 1019.
- Latif, N. and Fathy, I., Can. J. Chem., 1966, vol. 44, p. 1075.
- Kachkovskii, A.D., Tolmachev, A.I., Kobrin, L.O., Bilaya, E.E., and Ganushchak, N.I., *Ukr. Khim. Zh.*, 2004, p. 58.